Evaluation of the Multi-Scale Ultra-High Resolution (MUR) Analysis of Lake Surface Temperature
نویسندگان
چکیده
Obtaining accurate and timely lake surface water temperature (LSWT) analyses from satellite remains difficult. Data gaps, cloud contamination, variations in atmospheric profiles of temperature and moisture, and a lack of in situ observations provide challenges for satellite-derived LSWT for climatological analysis or input into geophysical models. In this study, the Multi-scale Ultra-high Resolution (MUR) analysis of LSWT is evaluated between 2007 and 2015 over a small (Lake Oneida), medium (Lake Okeechobee), and large (Lake Michigan) lake. The advantages of the MUR LSWT analyses include daily consistency, high-resolution (~1 km), near-real time production, and multi-platform data synthesis. The MUR LSWT versus in situ measurements for Lake Michigan (Lake Okeechobee) have an overall bias (MUR LSWT-in situ) of −0.20 ◦C (0.31 ◦C) and a RMSE of 0.86 ◦C (0.91 ◦C). The MUR LSWT versus in situ measurements for Lake Oneida have overall large biases (−1.74 ◦C) and RMSE (3.42◦C) due to a lack of available satellite imagery over the lake, but performs better during the less cloudy 15 July–30 September period. The results of this study highlight the importance of calculating validation statistics on a seasonal and annual basis for evaluating satellite-derived LSWT.
منابع مشابه
Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملStatistical - Spatial Analysis of the Core of Siberian High Pressure System Period 1955-2014)
One of the Siberian high pressure system is the Earth climate system, atmospheric important. The purpose of this study, analysis of core changes Siberian high pressure system in the period mentioned. To identify the core spatial variations in the timeframe mentioned data, daily sea level pressure and temperature of the earth's surface with a resolution of 2.5 degrees within the space of 30 to 6...
متن کاملEvaluation of seasonal variability in surface water quality of Shallow Valley Lake, Kashmir, India, using multivariate statistical techniques
Seasonal variation in water quality of Anchar Lake was evaluated using multivariate statistical techniques- principal component analysis (PCA) and cluster analysis (CA). Water quality data collected during 4 seasons was analyzed for 13 parameters. ANOVA showed significant variation in pH (F3 = 10.86, P < 0.05), temperature (F3 = 65, P
متن کاملEvaluation of seasonal variability in surface water quality of Shallow Valley Lake, Kashmir, India, using multivariate statistical techniques
Seasonal variation in water quality of Anchar Lake was evaluated using multivariate statistical techniques- principal component analysis (PCA) and cluster analysis (CA). Water quality data collected during 4 seasons was analyzed for 13 parameters. ANOVA showed significant variation in pH (F3 = 10.86, P < 0.05), temperature (F3 = 65, P
متن کاملThe role of topography on the simulation of Sistan wind structure in the east of Iranian Plateau
In this study, the interaction between atmosphere and earth surface and its effect on the simulation of Sistan wind structure in the East of Iranian plateau is investigated. For this purpose, four experiments have been carried out with RegCM4, with horizontal resolution of 20 km. In non-topography experiments, the model was implemented in three different conditions. The results indicated that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017